Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury
نویسندگان
چکیده
The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G(-) and G(+) bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms - arginase 1 (cytosolic) and arginase 2 (mitochondrial) - both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.
منابع مشابه
Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction.
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address nove...
متن کاملDexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury
BACKGROUND Ventilator-induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction ...
متن کاملPulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury.
BACKGROUND Pulmonary capillary endothelium-bound (PCEB) angiotensin-converting ectoenzyme (ACE) activity alteration is an early, sensitive, and quantifiable lung injury index in animal models. We hypothesized that (1) PCEB-ACE alterations can be found in patients with acute lung injury (ALI) and (2) PCEB-ACE activity correlates with the severity of lung injury and may be used as a quantifiable ...
متن کاملMatrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) comprise a spectrum of acute inflammatory pulmonary oedema resulting in refractory hypoxaemia in the absence of an underlying cardiogenic cause. There are multiple pulmonary and extrapulmonary causes and ALI/ARDS patients are a clinically heterogeneous group with associated high morbidity and mortality. Inflammatory injury t...
متن کاملEffects of hypoxia-inducible factor-1α and matrix metalloproteinase-9 on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury
The aim of this study was to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) and matrix metalloproteinase-9 (MMP-9) on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury (PALI). A total of 40 male Sprague-Dawley rats were randomly divided into a sham surgery group (n=10) and three PALI groups, in which acute pan...
متن کامل